Long-range corrected double-hybrid density functionals.
نویسندگان
چکیده
We extend the range of applicability of our previous long-range corrected (LC) hybrid functional, omegaB97X [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)], with a nonlocal description of electron correlation, inspired by second-order Moller-Plesset (many-body) perturbation theory. This LC "double-hybrid" density functional, denoted as omegaB97X-2, is fully optimized both at the complete basis set limit (using 2-point extrapolation from calculations using triple and quadruple zeta basis sets), and also separately using the somewhat less expensive 6-311++G(3df,3pd) basis. On independent test calculations (as well as training set results), omegaB97X-2 yields high accuracy for thermochemistry, kinetics, and noncovalent interactions. In addition, owing to its high fraction of exact Hartree-Fock exchange, omegaB97X-2 shows significant improvement for the systems where self-interaction errors are severe, such as symmetric homonuclear radical cations.
منابع مشابه
Systematic optimization of long-range corrected hybrid density functionals.
A general scheme for systematically modeling long-range corrected (LC) hybrid density functionals is proposed. Our resulting two LC hybrid functionals are shown to be accurate in thermochemistry, kinetics, and noncovalent interactions, when compared with common hybrid density functionals. The qualitative failures of the commonly used hybrid density functionals in some "difficult problems," such...
متن کاملLong-range corrected hybrid density functionals with damped atom-atom dispersion corrections.
We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functional [J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106] to include empirical atom-atom dispersion corrections. The resulting functional, omegaB97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, ome...
متن کاملLong-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections.
By incorporating the improved empirical atom-atom dispersion corrections from DFT-D3 [Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.2010, 132, 154104], two long-range corrected (LC) hybrid density functionals are proposed. Our resulting LC hybrid functionals, ωM06-D3 and ωB97X-D3, are shown to be accurate for a very wide range of applications, such as thermochemistry, kinetics, n...
متن کاملDouble-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability.
The objective of this work is the further systematic improvement of the accuracy of Double-Hybrid Density Functionals (DHDF) that add non-local electron correlation effects to a standard hybrid functional by second-order perturbation theory (S. Grimme, J. Chem. Phys., 2006, 124, 034108). The only known shortcoming of these generally highly accurate functionals is an underestimation of the long-...
متن کاملAssessment of density functional approximations for the hemibonded structure of the water dimer radical cation.
Due to the severe self-interaction errors associated with some density functional approximations, conventional density functionals often fail to dissociate the hemibonded structure of the water dimer radical cation (H(2)O)(2)(+) into the correct fragments: H(2)O and H(2)O(+). Consequently, the binding energy of the hemibonded structure (H(2)O)(2)(+) is not well-defined. For a comprehensive comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 131 17 شماره
صفحات -
تاریخ انتشار 2009